SLOB on Violin 3000 Series with PCIe Direct Attach

A reader Alex asked if I could post a comparative set of tests from my previous 3000 series Infiniband testing but using the PCIe direct-attached method. I was actually very keen to test this myself as I wanted to see how close the Infiniband connectivity method could get to the PCIe latencies. Why? Well, PCIe offers the lowest overhead but also causes some HA problems.

When SSDs first came out they were just that, solid state disks – or at least they looked like them. They had the same form factor and plugged into existing disk controllers, but had no spinning magnetic parts. This offered performance benefits but those benefits were restricted to the performance of those very disk controllers, which were never designed for this sort of technology. We call this the first generation of flash.

To overcome this architectural limitation, flash vendors came out with a new solution – placing flash on PCIe cards which can then attached direct to the system board, reducing latency and providing extreme performance. This is what we call the second generation of flash. It is what vendors such as Fusion IO provide – and looking at FIO’s share price you would have to congratulate them on getting to market and making a success of this.

However, there are other architectural limitations to this PCIe approach. One is that you cannot physical share the storage provided by PCIe – sure you can run some sort of sharing software to make it available outside of the server it is plugged into, but that increases latency and defeats the object of having super-fast flash storage plugged right into the system board. Even worse, if the system goes down then that flash (and everything that was on it) is unavailable. This makes PCIe flash cards a non-starter for HA solutions. If you want HA then the best you can do with them is use them for caching data which is still available on shared storage elsewhere (the Oracle Database Smart Flash Cache being one possible solution).

At Violin we don’t like that though. We don’t believe in spending time and CPU resources (or even worse, human resources) managing a cache of data trying to improve the probability and predictability of cache hits. Not when flash is now available as a tier 1 storage medium, giving faster results whilst using less space, power and cooling.

Another problem with PCIe is that the number of slots on a system board will always be limited – for reasons of heat, power, space etc there will always be a limit beyond which you cannot expand.

And there’s another even more major problem with PCIe flash cards, which no PCIe flash vendor can overcome: you cannot replace a PCIe card without taking the server down. That’s hardly the sort of enterprise HA solution that most customers are looking for.

This is where we get to the third generation of flash storage, which is to place the flash memory into arrays which connect via storage fabrics such as fibre-channel or Infiniband. This allows for the flash storage to be shared, to be extended, to offer resilience (e.g. RAID) and to have high-availability features such as online patching and maintenance, hot-swappable components etc.

This is the approach that Violin Memory took when designing their flash memory arrays from the ground up. And it’s an approach which has resulted in both families of array having a host of connectivity features: PCIe (for those who don’t want HA), iSCSI, Fibre-Channel and now Infiniband.

But what does the addition of a fibre-channel gateway do to the latency? Well, it adds a few hundred microseconds to the latency… In the scheme of things, when legacy disk arrays deliver latencies of >5ms that’s nothing, but when we are talking about flash memory with latencies of <1ms that suddenly becomes a big deal. And that’s why the Infiniband connectivity is so important – because it ostensibly offers the latency of PCIe but with the HA and management features of FC.

So let’s have a look at the latencies of the 3000 series using PCIe direct attach to see how the latency measures up against the Infiniband testing in my previous post:

Filename      Event                          Waits  Time(s)  Latency       IOPS
------------- ------------------------ ------------ -------- ------- ----------
awr_0_1.txt   db file sequential read      308,185       33     107     7,139.2
awr_0_4.txt   db file sequential read    4,166,252      510     122    24,883.1
awr_0_8.txt   db file sequential read    9,146,095    1,245     136    41,569.2
awr_0_16.txt  db file sequential read   19,496,201    3,112     160    70,121.9
awr_0_32.txt  db file sequential read   40,159,185   11,079     275    92,185.0
awr_0_64.txt  db file sequential read   81,342,725   49,049     602    99,060.1

We can see that again the latency is pretty much scaling at a linear rate. And up to 16 readers (which is double the number of CPU cores I have available) the latency remains under 200us. This is very similar to the Infiniband results, where up to (and including) 16 readers I also had <200us latency.

A couple of points to note:

  • Again the lack of CPU capability in my Supermicro servers is prohibiting me from really pushing the arrays – causing the tests above 16 readers to get skewed. I have requested a new set of lab servers with ten-core Westmere-EX CPUs so I just need to sit back and wait for Father Christmas to visit
  • The database block size is 8k
  • To make matters even more complicated, this was actually a RAC system (although I ran the SLOB tests from a single instance)

That last point is worth expanding. I said that PCie does not allow for HA. That’s not strictly true for Violin however. In this system I have a pair of Supermicro servers, each connected via PCie to my single 3205 SLC array and presenting a single LUN, which I have partitioned and presented to ASM as a series of ASM disks.

Because ASM does not require SCSI-3 persistent reservations or any other such nastiness, I am able to use this as shared storage and run a 11.2.0.3 RAC and Grid Infrastructure system on it. I’ve run all the usual cable-pulling tests and not managed to break it yet, although I’m not convinced it is a design I would choose over Infiniband if I had to choose… mainly because the PCIe method does not incorporate the Violin Memory HA Gateway, which gives me the management GUI and an additional layer of protection from partial / unaligned IO.

I now need to go and beg for that bigger server so I can get some serious testing done on the 6000 series array which is currently laughing at me every time I tickle it with SLOB

SLOB on Violin 3000 Series with Infiniband

Last week I invited Martin Bach to the Violin Memory EMEA headquarters to do some testing on both our 3000 and 6000 series arrays. Martin was very interested in seeing how the Violin flash memory arrays performed, having already had some experience with PCIe-based flash card vendor.

There are a few problems with PCIe flash cards, but perhaps the two most critical are that a) the storage cannot be shared, meaning it isn’t highly-available; and b) the replacement of any PCIe card requires the server to be taken offline.

Violin’s approach is fundamentally different because the flash memory is contained in a separate unit which can then be presented over one of a number of connections: PCIe direct-attached, Fibre Channel, iSCSI… and now Infiniband. All of those, with the exception of PCIe, allow for the storage to be shared and highly-available. So why do we still provide PCIe?

There are two answers. The first and most simple answer is for flexibility – the design of the arrays makes it simple to provide multiple connectivity options, so why not? The second and more important (in terms of performance) is for latency. The overhead of adding fibre-channel to a flash memory is only in the order of one or two hundred microseconds, but if you consider that the 6216 SLC array has a read and write latency of 90 and 25 microseconds respectively that’s quite an additional overheard.

The new and exciting addition to these options is therefore Infiniband, which allows for extremely low latencies yet with the ability to avoid the pitfalls of PCIe around sharing and HA.

To demonstrate the latency figures achievable through a 3205 SLC array connected via Infiniband, Martin and I ran a series of SLOB physical IO tests and monitored the latency. The tests consisted of gradually ramping up the number of readers to see how the latency fared as the number of IOPS increased – we always kept the number of writers as zero. As usual the database block size was 8k. Here are the results:

Filename      Event                          Waits  Time(s)  Latency       IOPS
------------- ------------------------ ------------ -------- ------- ----------
awr_0_1.txt   db file sequential read        9,999        1     100     2,063.8
awr_0_4.txt   db file sequential read       29,992        5     166     5,998.8
awr_0_8.txt   db file sequential read       39,965        6     150     8,285.5
awr_0_16.txt  db file sequential read       79,958       15     187    13,897.8
awr_0_32.txt  db file sequential read      159,914       43     269    18,133.9
awr_0_64.txt  db file sequential read   21,595,919    6,035     280   115,461.1
awr_0_128.txt db file sequential read   99,762,808   69,007     691   124,907.4

The interesting thing is to note how the latency scales linearly. The tests were performed on a 2s8c16t Supermicro server with 2x QDR Infiniband connections via a switch to the array. The Supermicro starts having trouble driving the IO once we get beyond 32 readers – and by the time we get to 128 the load average is so high on the machine that even logging on is hard work. I guess it’s time to ask for a bigger server in the lab…

SLOB testing on Violin and Exadata

I love SLOB, the Silly Little Oracle Benchmark introduced to me by Kevin Closson in his blog.

I love it because it’s so simple to setup and use. Benchmarking tools such as Hammerora have their place of course, but let’s say you’ve just got your hands on an Exadata X2-8 machine and want to see what sort of level of physical IO it can drive… what’s the quickest way to do that?

Host Name        Platform                         CPUs Cores Sockets Memory(GB)
---------------- -------------------------------- ---- ----- ------- ----------
exadataX2-8.vmem Linux x86 64-bit                  128    64       8    1009.40

Anyone who knows their Exadata configuration details will spot that this is one of the older X2-8’s as it “only” has eight-core Beckton processors instead of the ten-core Westmeres buzzing away in today’s boxes. But for the purposes of creating physical I/O this shouldn’t be a major problem.

Running with a small buffer cache recycle pool and calling SLOB with 256 readers (and zero writers) gives:

Load Profile              Per Second
~~~~~~~~~~~~         ---------------
  Physical reads:          138,010.5

So that’s 138k read IOPS at an 8k database block size. Not bad eh? I tried numerous values for readers and 256 gave me the best result.

Now let’s try it on the Violin 3000 series flash memory array I have here in the lab. I don’t have anything like the monster Sun Fire X4800 servers in the X2-8 with their 1TB of RAM and proliferation of 14 IB-connected storage cells. All I have is a Supermicro server with two quad-core E5530 Gainestown processors and under 100GB RAM:

Host Name        Platform                         CPUs Cores Sockets Memory(GB)
---------------- -------------------------------- ---- ----- ------- ----------
oel57            Linux x86 64-bit                   16     8       2      11.74

You can probably guess from the hostname that I’ve installed Oracle Linux 5 Update 7. I’m also running the Oracle Unbreakable Enterprise Kernel (v1) and using Oracle 11.2.0.3 database and Grid Infrastructure in order to take advantage of the raw performance of Violin LUNs on ASM. For each of the 8x100GB LUNs I have set the IO scheduler to use noop, as described in the installation cookbook.

So let’s see what happens when we run SLOB with the same small buffer cache recycle pool and 16 readers (zero writers):

Load Profile              Per Second
~~~~~~~~~~~~         ---------------
  Physical reads:          159,183.9

That’s 159k read IOPS at an 8k database block size. I’m getting almost exactly 20k IOPS per core, which funnily enough is what Kevin told me to expect as a rough limit.

The thing is, my Supermicro has four dual-port 8Gb fibre-channel cards in it, but only two of them have connections to the Violin array I’m testing here. The other two are connected to an identical 3000 series array, so maybe I should present another 8 LUNs from that and add them to my ASM diskgroup… Let’s see what happens when I rerun SLOB with the same 16 readers / 0 writers:

Load Profile              Per Second
~~~~~~~~~~~~         ---------------
  Physical reads:          236,486.7

Again this is an 8k blocksize so I’ve achieved 236k read IOPS. That’s nearly 30k IOPS per core!

I haven’t run this set of tests as a marketing exercise or even an attempt to make Violin look good. I was generally interested in seeing how the two configurations compared – and I’m blown away by the performance of the Violin Memory arrays. I should probably spend some more time investigating these 3000 arrays to see whether I can better that value, but like a kid with a new toy I have one eye on the single 6000 series array which has just arrived in the lab here. I wonder what I can get that to deliver with SLOB?

Oracle on Violin – Installation Cookbooks

I’ve been installing Oracle databases on Violin Memory a lot recently so I thought I’d document the process for each different flavour and combination of OS, kernel, database software and filesystem / ASM configuration that I use.

Only one so far but the menu will grow…