SLOB on Violin 3000 Series with Infiniband

Last week I invited Martin Bach to the Violin Memory EMEA headquarters to do some testing on both our 3000 and 6000 series arrays. Martin was very interested in seeing how the Violin flash memory arrays performed, having already had some experience with PCIe-based flash card vendor.

There are a few problems with PCIe flash cards, but perhaps the two most critical are that a) the storage cannot be shared, meaning it isn’t highly-available; and b) the replacement of any PCIe card requires the server to be taken offline.

Violin’s approach is fundamentally different because the flash memory is contained in a separate unit which can then be presented over one of a number of connections: PCIe direct-attached, Fibre Channel, iSCSI… and now Infiniband. All of those, with the exception of PCIe, allow for the storage to be shared and highly-available. So why do we still provide PCIe?

There are two answers. The first and most simple answer is for flexibility – the design of the arrays makes it simple to provide multiple connectivity options, so why not? The second and more important (in terms of performance) is for latency. The overhead of adding fibre-channel to a flash memory is only in the order of one or two hundred microseconds, but if you consider that the 6216 SLC array has a read and write latency of 90 and 25 microseconds respectively that’s quite an additional overheard.

The new and exciting addition to these options is therefore Infiniband, which allows for extremely low latencies yet with the ability to avoid the pitfalls of PCIe around sharing and HA.

To demonstrate the latency figures achievable through a 3205 SLC array connected via Infiniband, Martin and I ran a series of SLOB physical IO tests and monitored the latency. The tests consisted of gradually ramping up the number of readers to see how the latency fared as the number of IOPS increased – we always kept the number of writers as zero. As usual the database block size was 8k. Here are the results:

Filename      Event                          Waits  Time(s)  Latency       IOPS
------------- ------------------------ ------------ -------- ------- ----------
awr_0_1.txt   db file sequential read        9,999        1     100     2,063.8
awr_0_4.txt   db file sequential read       29,992        5     166     5,998.8
awr_0_8.txt   db file sequential read       39,965        6     150     8,285.5
awr_0_16.txt  db file sequential read       79,958       15     187    13,897.8
awr_0_32.txt  db file sequential read      159,914       43     269    18,133.9
awr_0_64.txt  db file sequential read   21,595,919    6,035     280   115,461.1
awr_0_128.txt db file sequential read   99,762,808   69,007     691   124,907.4

The interesting thing is to note how the latency scales linearly. The tests were performed on a 2s8c16t Supermicro server with 2x QDR Infiniband connections via a switch to the array. The Supermicro starts having trouble driving the IO once we get beyond 32 readers – and by the time we get to 128 the load average is so high on the machine that even logging on is hard work. I guess it’s time to ask for a bigger server in the lab…

SLOB testing on Violin and Exadata

I love SLOB, the Silly Little Oracle Benchmark introduced to me by Kevin Closson in his blog.

I love it because it’s so simple to setup and use. Benchmarking tools such as Hammerora have their place of course, but let’s say you’ve just got your hands on an Exadata X2-8 machine and want to see what sort of level of physical IO it can drive… what’s the quickest way to do that?

Host Name        Platform                         CPUs Cores Sockets Memory(GB)
---------------- -------------------------------- ---- ----- ------- ----------
exadataX2-8.vmem Linux x86 64-bit                  128    64       8    1009.40

Anyone who knows their Exadata configuration details will spot that this is one of the older X2-8’s as it “only” has eight-core Beckton processors instead of the ten-core Westmeres buzzing away in today’s boxes. But for the purposes of creating physical I/O this shouldn’t be a major problem.

Running with a small buffer cache recycle pool and calling SLOB with 256 readers (and zero writers) gives:

Load Profile              Per Second
~~~~~~~~~~~~         ---------------
  Physical reads:          138,010.5

So that’s 138k read IOPS at an 8k database block size. Not bad eh? I tried numerous values for readers and 256 gave me the best result.

Now let’s try it on the Violin 3000 series flash memory array I have here in the lab. I don’t have anything like the monster Sun Fire X4800 servers in the X2-8 with their 1TB of RAM and proliferation of 14 IB-connected storage cells. All I have is a Supermicro server with two quad-core E5530 Gainestown processors and under 100GB RAM:

Host Name        Platform                         CPUs Cores Sockets Memory(GB)
---------------- -------------------------------- ---- ----- ------- ----------
oel57            Linux x86 64-bit                   16     8       2      11.74

You can probably guess from the hostname that I’ve installed Oracle Linux 5 Update 7. I’m also running the Oracle Unbreakable Enterprise Kernel (v1) and using Oracle 11.2.0.3 database and Grid Infrastructure in order to take advantage of the raw performance of Violin LUNs on ASM. For each of the 8x100GB LUNs I have set the IO scheduler to use noop, as described in the installation cookbook.

So let’s see what happens when we run SLOB with the same small buffer cache recycle pool and 16 readers (zero writers):

Load Profile              Per Second
~~~~~~~~~~~~         ---------------
  Physical reads:          159,183.9

That’s 159k read IOPS at an 8k database block size. I’m getting almost exactly 20k IOPS per core, which funnily enough is what Kevin told me to expect as a rough limit.

The thing is, my Supermicro has four dual-port 8Gb fibre-channel cards in it, but only two of them have connections to the Violin array I’m testing here. The other two are connected to an identical 3000 series array, so maybe I should present another 8 LUNs from that and add them to my ASM diskgroup… Let’s see what happens when I rerun SLOB with the same 16 readers / 0 writers:

Load Profile              Per Second
~~~~~~~~~~~~         ---------------
  Physical reads:          236,486.7

Again this is an 8k blocksize so I’ve achieved 236k read IOPS. That’s nearly 30k IOPS per core!

I haven’t run this set of tests as a marketing exercise or even an attempt to make Violin look good. I was generally interested in seeing how the two configurations compared – and I’m blown away by the performance of the Violin Memory arrays. I should probably spend some more time investigating these 3000 arrays to see whether I can better that value, but like a kid with a new toy I have one eye on the single 6000 series array which has just arrived in the lab here. I wonder what I can get that to deliver with SLOB?

ASM Metadata Utilities

One of the things I meant to write about when I started this blog was the undocumented stuff in Oracle that is publicly available. Since I used to spend a lot of time working with ASM I had an idea that I would write an article about kfed, the kernel file editor used to query (and in desperate circumstances actually change) the mysterious dark matter known as ASM Metadata.

I say mysterious, it isn’t actually that unfathomable, but I have heard a lot of people get confused between the ASM Metadata which resides at the start of each ASM disk (and contains structures such as the Partner Status Table) and the ASM “metadata” that can be backed up and restored using the commands md_backup and md_restore (essentially just information about directory structure and aliases etc in the diskgroup). As usual Oracle’s naming convention does not make things completely clear.

Anyway after a quick bit of Google-fu I’ve realised that I will have to scrap the whole idea anyway, because my ex-Oracle colleague Bane Radulović has written a great article all about kfed and then added insult to injury by eloquently explaining all about ASM Metadata.

Race you to write an article about AMDU then Bane…

Oh too late.