The Biggest Gap In The Clouds? High Performance RDBMS

Over the course of the last few blog posts, we’ve looked at how an increasing number of database workloads are migrating to the cloud, how there is more than one path to get there… and why overprovisioning is one of the biggest challenges to overcome.

We’re talking about business-critical application workloads here: big, complex, demanding, mission-critical, sensitive, performance-hungry… When on-prem, they are almost certainly running on dedicated, high-end infrastructure. And that’s a potential issue when you then migrate them to run on “someone else’s computer“.

As we’ve discussed before, the cloud is really a big pool of discrete resources and services, all of which are available on demand. You want a managed PostgreSQL instance? Click! It’s yours. You want three hundred virtual machines on which you can install your own software? Clickety-click! Off you go. If you’ve got the budget, the cloud has got a way for you to spend it. But underneath it all, whether you are using PaaS databases supplied by the cloud provider or installing the database software on IaaS systems, you are sharing that infrastructure – and the available performance – with the rest of the world.

Cloud Outcomes: Optimization versus Modernization

For some database workloads moving to the cloud, the modernization path will be the best fit, which means they will likely move to Platform-as-a-Service solutions where the day-to-day management of the database, operating system and infrastructure is taken care of by the cloud provider. Some examples of this path: on-prem SQL Server databases moving to Azure SQL Managed Instances; Oracle Databases moving to AWS’s Oracle RDS solution, etc.

But there is usually a certain class of database workload which doesn’t easily fit into these pre-packaged PaaS solutions: the big, the complex, the gnarly… the monsters of your data centre. And they inevitably end up in Infrastructure-as-a-Service… or stuck on-prem. For customers choosing the IaaS route (the “optimization path” in cloud-speak), the cloud provider manages the infrastructure but the customer is still responsible for the database and operating system.

Obviously, IaaS has a higher management overhead than PaaS, but often the journey to IaaS is simpler (essentially more of a lift and shift approach), while PaaS solutions often require a more complex migration. Especially with some cloud providers, where the recommended PaaS solution is actually a different database product entirely (for example, Oracle customers moving to Google Cloud or Microsoft Azure will be recommended by those cloud providers to move to Cloud SQL and Managed PostgreSQL respectively).

I/O Performance Is The Biggest Challenge

My view is that PaaS solutions are the best path for all appropriate workloads, but there will always be some outliers which need to move to IaaS. Almost by definition, those are the most high-profile, demanding, expensive, revenue-affecting… in fact… the most interesting workloads. And in all the cases I’ve seen*, I/O performance has been the limiting factor.

It’s relatively easy to get a lot of compute power in the cloud. But as soon as you start ramping up the amount of data you need to read and write, or demanding that those reads and writes have very fast, predictable response times, you hit problems. In other words, if latency, IOPS or throughput are your metrics of choice, you’d better be ready to start doing unnatural things.

And it’s not necessarily the case that your required level of performance cannot be achieved. Often, it’s more correct to say that your required levels of performance cannot be achieved at an acceptable cost. Because it turns out that the following statement is just as true in the cloud as it ever was on-prem:

Performance and Cost are two sides of the same coin…

This is why I believe that the biggest gap in the cloud providers’ product portfolios today is in the area of high performance relational databases: primarily Oracle Database and Microsoft SQL Server. The PaaS solutions are designed for the average workloads, not the high-end. A complex database running on, for example, Oracle Exadata will struggle to run on a vanilla IaaS deployment – while the refactoring required to take that database and migrate it to Managed PostreSQL is almost unimaginable.

And so, now, we have finally come to the point: the Silk Platform. I have spent the last few years at Silk bringing to market a solution specifically for this problem. Over the next few posts, I’m going to explain what Silk is and how we built our solution to deliver very high performance for databases in the cloud.

But you won’t have to rely on just my word for it. I have backup 🙂

* I work primarily with customers of Microsoft Azure and Google Cloud

Advertisement

Cloud Compromises: Constrained and Optimized CPUs

Imagine the scenario where you wonder into a clothing store to buy a t-shirt. You find a design you like in size “Medium” but it’s too tight (I guess #lockdown has been unkind to us all…) so you ask for the next size up. But when it arrives, you notice something bizarre: the “Large” is not only wider and longer, it also has an extra arm hole. Yes, there are enough holes for three arms as well as your head. Even more bizarrely, the “XL” size has four sets of sleeves, while the “Small” has only one and the “XS” none at all!

Surprisingly, this analogy is very applicable to cloud computing, where properties like compute power, memory, network bandwidth, capacity and performance are often tied together. As we saw in the previous post, a requirement for a certain amount of read I/O Operations Per Second (IOPS) can result in the need to overprovision unwanted capacity and possibly even unnecessary amounts of compute power.

But there is one situation where this causes extra levels of pain: when the workload in question is database software which is licensable by CPU cores (e.g. Oracle Database, Microsoft SQL Server).

To extend the opening analogy into total surrealism, imagine that the above clothing store exists in a state which collects a Sleeve Tax of %100 of the item value per sleeve. Now, your chosen t-shirt might be $40 but the Medium size will cost you $120, the Large $160 and the XXXXXL (suitable for octopods) a massive $360.

Luckily, the cloud providers have a way to help you out here. But it kind of sucks…

Constrained / Optimized VM Sizes

If you need large amounts of memory or I/O, the chances are you will have to pick a VM type which has a larger number of cores. But if you don’t want to buy databases licenses for these additional cores (because you don’t need the extra CPU power), you can choose to restrict the VM instance so that it only uses a subset of the total available cores. This is similar to the concept of logical partitioning which you may already have used on prem. Here are two examples of this practice from the big hyperscalers:

Microsoft Azure: Constrained vCPU capable VM sizes

Amazon Web Services: Introducing Optimize CPUs for Amazon EC2 Instances

As you can see, Microsoft and AWS have different names for this concept, but the idea is the same. You provision, let’s say, a 128 vCPU instance and then you restrict it to only using, for example, 32 vCPUs. Boom – you’ve dropped your database license requirement to 25% of the total number of vCPUs. Ok so you only get the compute performance of 25% too, but that’s still a big win on the license cost… right?

Well yes but…

There’s a snag. You still have to pay the full cost of the virtual machine despite only using a fraction of its resources. The monthly cost from the cloud provider is the same as if you were using the whole machine!

To quote Amazon (emphasis mine):

Please note that CPU optimized instances will have the same price as full-sized EC2 instances of the same size.

Or to quote the slightly longer version from Microsoft (emphasis mine):

The licensing fees charged for SQL Server or Oracle are constrained to the new vCPU count, and other products should be charged based on the new vCPU count. This results in a 50% to 75% increase in the ratio of the VM specs to active (billable) vCPUs. These new VM sizes allow customer workloads to use the same memory, storage, and I/O bandwidth while optimizing their software licensing cost. At this time, the compute cost, which includes OS licensing, remains the same one as the original size.

It’s great to be able to avoid the (potentially astronomical) cost of unnecessary database licences, but this is still a massive compromise – and the cost will add up over each month you are billed for compute cores that you literally cannot use. Again, this is the public cloud demonstrating that inefficiency and overprovisioning are to be accepted as a way of life.

Surely there must be a better way?

Spoiler alert: there IS a better way

Overprovisioning: The Curse Of The Cloud

I want you to imagine that you check in to a nice hotel. You’ve had a good day and you feel like treating yourself, so you decide to order breakfast in your room for the following morning. Why not? You fill out the menu checkboxes… Let’s see now: granola, toast, coffee, some fruit. Maybe a juice. That will do nicely.

You hang the menu on the door outside, but later a knock at the door brings bad news: You can only order a maximum of three items for breakfast. What? That’s crazy… but no amount of arguing will change their rules. Yet you really don’t want to choose just three of your five items. So what do you do? The answer is simple: you pay for a second hotel room so you can order a second breakfast.

Welcome to the world of overprovisioning.

Overprovisioning = Inefficiency

Overprovisioning is the act of deploying – and paying for – resources you don’t need, usually as a compromise to get enough of some other resource. It’s a technical challenge which results in a commercial or financial penalty. More simply, it’s just inefficiency.

The history of Information Technology is full of examples of this as well as technologies to overcome it: virtualization is a solution designed to overcome the inefficiency of deploying multiple physical servers; containerisation overcomes the inefficiency of virtualising a complete operating system many times… it’s all about being more efficient so you don’t have to pay for resources you don’t really need.

In the cloud, the biggest source of overprovisioning is the way that cloud resources like compute, memory, network bandwidth, storage capacity and performance are packaged together. If you need one of these in abundance, the chances are you will need to pay for more of the others regardless of whether they are required or not.

Overprovisioning = Compromise

As an example, at the time of writing, Google Cloud Platform’s pd-balanced block storage options provide 6 read IOPS and 6 write IOPS per GB of capacity:

* Persistent disk IOPS and throughput performance depends on disk size, instance vCPU count, and I/O block size, among other factors.

Consider a 1TB database with a reasonable requirement of 30,000 read IOPS during peak load. To build a solution capable of this, 5000GB (i.e. 5TB) of capacity would need to be provisioned… meaning 80% of the capacity is wasted!

Worse still, the “Read IOPS per instance” row of the table tells us that some of the available GCP instance types may not be able to hit our 30,000 requirement, meaning we may have to (over)provision a larger virtual machine type and pay for cores and RAM that aren’t necessary (by the way, I’m not picking on GCP here, this is common to all public clouds).

But the real sucker punch is that, if this database is licensed by CPU cores (e.g. Oracle, SQL Server) and we are having to overprovision CPU cores to get the required IOPS numbers, we now have to pay for additional, unwanted – and very expensive – database licenses.

Overprovisioning = Overpaying

My (old) front door

Let’s not imagine that this is a new phenomenon. If you’ve ever over-specced a server in your data centre (me), if you’ve ever convinced your boss that you need the Enterprise Edition of something because you thought it would be better for your career prospects (also me), or if you’ve ever spent £350 on a thermal imaging camera just so you can win an argument about whether you need a new front door (I neither admit nor deny this) then you have been overprovisioning.

It’s just that the whole nature of cloud computing, with it’s self-service, on-demand, limitlessly-scalable charateristics make it so easy to overprovision things all the time. So while the amounts may seem small when shown on the cloud provider’s Price per hour list, when you multiply them by the number of VMs, the number of regions and the number of hours in a year, they start to look massive on your bill.

And when you consider the knock on effects on database licensing, things really get painful. But let’s save that for the next blog post

The Battle For Your Databases

There’s a battle going on right now between all of the public cloud vendors – a war in the clouds. And you might be surprised to hear what they are fighting over… They are fighting over you. Or, more specifically, your business-critical databases.

Everybody has something in the cloud these days. On a personal level, we are all keeping our photos, our music and our emails in the cloud. Corporations have followed suit: email, document collaboration and workflow, backups, websites… Almost everything is in the cloud. Almost.

The Big Scary Stuff That Nobody Wants To Move

Pretty much every company with an on-prem presence will have one or more relational databases underpinning their critical applications. Oracle Database, Microsoft SQL Server, PostgreSQL, DB/2 (the forgotten database of yesteryear: it’s still out there, but nobody likes to talk about it), MySQL… these products support mission critical applications like CRM, ERM, e-commerce, all those SAP modules that I can never remember the names of… And in each industry vertical, there are critical systems: healthcare has Electronic Patient Records, retail has its warehouse management platforms, finance has all manner of systems labelled Do Not Touch.

These workloads are the last bastion of on-prem, the final stand of the privately-managed data centre. And just like mainframes, on-prem may never completely die, but we should expect to see it fade away this decade. The challenge, though, is the inertia caused by such massive amounts of complexity and the associated risk of disturbing it. I have witnessed DBA teams who draw lots over which unfortunate will have to log on to “that database”, the one in the corner that nobody understands or wants to touch when it’s working ok. So how are they going to migrate that entire thing into AWS or Azure? Everybody knows a story about an eighteen-month migration project that overran budget by 1000% and then failed, right?

The View From The Clouds

So you may ask, if all this complex, gnarly stuff is full of risk, why do the hyperscalers want it? The answer is, because this is the biggest game left on the hunting ground. These vast technology stacks are the crown jewels of on-prem data estates. If you are Cloud Vendor A, there are some important reasons why you really want to capture this workload into your cloud:

  1. Big applications and databases require a large recurring spend on premium cloud infrastructure
  2. Customers are used to spending large amounts of money to run these services
  3. The surrounding application ecosystem offers potential for the upsell of further cloud services (analytics, AI, business intelligence etc)
  4. Once that workload comes into your cloud, it’s probably never leaving. In other words, it’s a long-term guaranteed revenue stream.

The last point is especially important: vendors use the term sticky to describe workloads like this. The effort of migrating all that sensitive, critical data and all that impenetrable business logic (written ten years ago by developers who have long since moved on) means you are never going to want to do this more than once. Once it’s in, it’s in.

A Massive Anchor

Working with one of the hyperscalers, I have heard these databases described as anchor workloads (credit: Kellyn Pot’vin Gorman) because they are what holds back the migration of large, juicy and complex environments into the public cloud. Like the biggest beast on the savannah, they are the hardest to take down… but a successful capture means everybody gets to eat until they are full.

So if this is you – if you are in fact a massive anchor – it’s probably worth keeping this in mind. Migrating your complex, challenging workload to the public cloud might seem like a mammoth task from your perspective, but to the hyperscalers you are the goose that lays the golden egg. And they can’t wait to get cracking.

Side note: I originally planned to call this post “Cloud Wars”, but I discovered that my former Oracle colleague, the inestimable Bob Evans, had beaten me to it…

The Public Cloud: The Hotel For Your Applications

Unless you are Larry Ellison (hi Larry!), the chances are you probably live in a normal house or an apartment, maybe with your family. You have a limited number of bedrooms, so if you want to have friends or relatives come to stay with you, there will come point where you cannot fit anybody else in without it being uncomfortable. Of course, for a large investment of time and money, you could extend your existing accommodation or maybe buy somewhere bigger, but that feels a bit extreme if you only want to invite a few people On to your Premises for the weekend.

Another option would be to sell up and move into a hotel. Pick the right hotel and you have what is effectively a limitless ability to scale up your accommodation – now everybody can come and stay in comfort. And as an added bonus, hotels take care of many dull or monotonous daily tasks: cooking, cleaning, laundry, valet parking… Freeing up your time so you can concentrate on more important, high-level tasks – like watching Netflix. And the commercial model is different too: you only pay for rooms on the days when you use them. There is no massive up-front capital investment in property, no need to plan for major construction works at the end of your five year property refresh cycle. It’s true pay-as-you-go!

It’s The Cloud, Stupid

The public cloud really is the hotel for your applications and databases. Moving from an investment model to a consumption-based expense model? Tick. Effectively limitless scale on demand? Tick. Being relieved of all the low-level operational tasks that come with running your own infrastructure? Tick. Watching more Netflix? Definite Tick.

But, of course, the public cloud isn’t better (or worse) than On Prem, it’s just different. It has potential benefits, like those above, but it also has potential disadvantages which stem from the fact that it’s a pre-packaged service, a common offering. Everyone has different, unique requirements but the major cloud providers cannot tailor everything they do to you individual needs – that level of customisation would dilute their profit margins. So you have to adapt your needs to their offering.

To illustrate this, we need to talk about car parking:

Welcome To The Hotel California

So… you decide to uproot your family and move into one of Silicon Valley’s finest hotels (maybe we could call it Hotel California?) so you can take advantage of all those cloud benefits discussed above. But here’s the problem, your $250/day suite only comes with one allocated parking bay in the hotel garage, yet your family has two cars. You can “burst” up by parking in the visitor spaces, but that costs $50/day and there is no guarantee of availability, so the only solution which guarantees you a second allocated bay is to rent a second room from the hotel!

This is an example of how the hotel product doesn’t quite fit with your requirements, so you have to bend your requirement to their offering – at the sacrifice of cost efficiency. (Incurring the cost of a second room that you don’t always need is called overprovisioning.) It happens all the time in every industry: any time a customer has to fit a specific requirement to a vendor’s generic offering, something somewhere won’t quite fit – and the only way to fix it is to pay more.

The public cloud is full of situations like this. The hyperscalers have extensive offerings but their size means they are less flexible to individual needs. Smaller cloud companies can be more attentive to an individual customer’s requirements, but lack the economies of scale of companies like Amazon Web Services, Microsoft and Google, meaning their products are less complete and their prices potentially higher. The only real way to get exactly what you want 100% of the time is… of course… to host your data on your own kit, managed by you, on your premises.

Such A Lovely Place

I should state here for the record that I am not anti-public cloud. Far from it. I just think it’s important to understand the implications of moving to the public cloud. There are a lot of articles written about this journey – and many of them talk about “giving up control of your data”. I’m not sure I entirely buy that argument, other than in a literal data-sovereignty sense, but one thing I believe to be absolutely beyond doubt is that a move to the public cloud will require an inevitable amount of compromise.

That should be the end of this post, but I’m afraid that I cannot now pass up the opportunity to mention one other compromise of the public cloud, purely because it fits into the Hotel California theme. I know, I’m a sucker for a punchline.

You and your family have enjoyed your break at the hotel, but you feel that it’s not completely working – those car parking charges, the way you aren’t allowed to decorate the walls of your room, the way the hotel suddenly discontinued Netflix and replaced it with Crackle. What the …? So you decide to move out, maybe to another hotel or maybe back to your own premises. But that’s when you remember about the egress charges; for every family member checking out of the hotel, you have to pay $50,000. Yikes!

I guess it turns out that, just like with the cloud, you can check out anytime you like… but you can never leave.

Databases Now Live In The Cloud

 

I recently stumbled across a tech news post which surprised me so much I nearly dropped my mojito. The headline of this article screamed:

Gartner Says the Future of the Database Market Is the Cloud

Now I know what you are thinking… the first two words probably put your cynicism antenna into overdrive. And as for the rest, well duh! You could make a case for any headline which reads “The Future of ____________ is the Cloud”. Databases, Artificial Intelligence, Retail, I.T., video streaming, the global economy… But stick with me, because it gets more interesting:

On-Premises DBMS Revenue Continues to Decrease as DBMS Market Shifts to the Cloud

Yeah, not yet. That’s just a predictable sub-heading, I admit. But now we get to the meat of the article – and it’s the very first sentence which turns everything upside down:

By 2022, 75% of all databases will be deployed or migrated to a cloud platform, with only 5% ever considered for repatriation to on-premises, according to Gartner, Inc.

Boom! By the year 2022, 75% of all databases will be in the cloud! Even with the cloud so ubiquitous these days, that number caused me some surprise.

Also, I have so many questions about this:

  1. Does “a cloud platform” mean the public cloud? One would assume so but the word “public” doesn’t appear anywhere in the article.
  2. Does “all databases” include RDBMS, NoSQL, key-value stores, what? Does it include Microsoft Access?
  3. Is the “75%” measured by the number of individual databases, by capacity, by cost, by the number of instances or by the number of down-trodden DBAs who are trying to survive yet another monumental shift in their roles?
  4. How do databases perform in the public cloud?

Now, I’m writing this in mid-2020, in the middle of the global COVID19 pandemic. The article, which is a year old and so pre-COVID19, makes the prediction that this will come true within the next two years. It doesn’t allow for the possibility of a total meltdown of society or the likelihood that the human race will be replaced by Amazon robots within that timeframe. But, on the assumption that we aren’t all eating out of trash cans by then, I think the four questions above need to be addressed.

Questions 1, 2 and 3 appear to be the domain of the authors of this Gartner report. But question 4 opens up a whole new area for investigation – and that will be the topic of this next set of blogs. But let’s finish reading the Gartner notes first, because there’s more:

“Cloud is now the default platform for managing data”

One of the report’s authors, long-serving and influential Gartner analyst Merv Adrian, wrote an accompanying blog post in which he makes the assertion that “cloud is now the default platform for managing data”.

And just to make sure nobody misunderstands the strength of this claim, he follows it up with the following, even stronger, remark:

On-premises is the past, and only legacy compatibility or special requirements should keep you there.

Now, there will be people who read this who immediately dismiss it as either obvious (“we’re already in the cloud”) or gross exaggeration (“we aren’t leaving our data centre anytime soon”) – such is the fate of the analyst. But I think this is pretty big. Perhaps the biggest shift of the last few decades, in fact.

Why This Is A Big Deal

The move from mainframes to client/server put more power in the hands of the end users; the move to mobile devices freed us from the constraints of physical locations; the move to virtualization released us from the costs and constraints of big iron; but the move to the cloud is something which carries far greater consequences.

After all, the cloud offers many well-known benefits: almost infinite scalability and flexibility, immunity to geographical constraints, costs which are based on usage (instead of up-front capital expenditure), and a massive ecosystem of prebuilt platforms and services.

And all you have to give up in return is complete control of your data.

Oh and maybe also the predictability of your I.T. costs – remember in the old days of cell phones, when you never exactly knew what your bill would look like at the end of the month? Yeah, like that, but with more zeroes on the end.

Over to Merv to provide the final summary (emphasis is mine):

The message in our research is simple – on-premises is the new legacy.  Cloud is the future. All organizations, big and small, will be using the cloud in increasing amounts. While it is still possible and probable that larger organizations will maintain on-premises systems, increasingly these will be hybrid in nature, supporting both cloud and on-premises.

The two questions I’m going to be asking next are:

  1. What does this shift to the cloud mean for the unrecognised but true hero of the data center, the DBA?
  2. If we are going to be building or migrating all of our databases to the cloud, how do we address the ever-critical question of database performance?

Link to Source Article from Gartner

Link to Merv Adrian blog post

Don’t Call It A Comeback

I’ve Been Here For Years…

Ok, look. I know what I said before: I retired the jersey. But like all of the best superheroes, I’ve been forced to come out of retirement and face a fresh challenge… maybe my biggest challenge yet.

Back in 2012, I started this blog at the dawn of a new technology in the data centre: flash memory, also known as solid state storage. My aim was to fight ignorance and misinformation by shining the light of truth upon the facts of storage. Yes, I just used the phrase “the light of truth”, get over it, this is serious. Over five years and more than 200 blog posts, I oversaw the emergence of flash as the dominant storage technology for tier one workloads (basically, databases plus other less interesting stuff). I’m not claiming 100% of the credit here, other people clearly contributed, but it’s fair to say* that without me you would all still be using hard disk drives and putting up with >10ms latencies. Thus I retired to my beach house, secure in the knowledge that my legend was cemented into history.

But then, one day, everything changed…

Everybody knows that Information Technology moves in phases, waves and cycles. Mainframes, client/server, three-tier architectures, virtualization, NoSQL, cloud… every technology seems to get its moment in the sun…. much like me recently, relaxing by the pool with a well-earned mojito. And it just so happened that on this particular day, while waiting for a refill, I stumbled across a tech news article which planted the seed of a new idea… a new vision of the future… a new mission for the old avenger.

It’s time to pull on the costume and give the world the superhero it needs, not the superhero it wants…

Guess who’s back?

* It’s actually not fair to say that at all, but it’s been a while since I last blogged so I have a lot of hyperbole to get off my chest.